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LC TROUBLESHOOTING
Calibration Curves, Part l: To b
or Not to b?

here seem to be a disproporrionate
number of problems encountered
in the concentration region near

the limit of detection and lower limit of
quantification with calibration curves

used for liquid chromatography (LC)

methods. Some of these problems relate

to improperly selecting the model used
for calibration. The choice of the limits of
detection and quantification is an impor-
tant decision that can be confusing. This
montht installment of "LC Troubleshoot-
ing" is the first ofa series about calibra-

tion curves. This month we will discuss
some different calibration models, how to
decide ifa calibration curve goes through
zero, and some problems that can occur
if the wrong choices are made. In future
columns, we will look at how to deter-
mine the lower limits of a method as well
as standardization techniques: internal
standardization, external standardization,
and the method of standard additions.
'W'e 

also will look in more detail at normal

errors as they relate to signal-to-noise ratio
in trace analysis.

Calibrat ion

Most LC methods are used for quantita-
tive analysis - that is, the methods that
answer the "how much is there?" ques-
tion. Nearly all of these methods rely on
comparison of the peak area (or less often,
peak height) of a sample with that of a
reGrence standard. To do this, we use
a calibration curve (also referred to as a
standard curve or sometimes "line"). The
rwo most popular methods of calibration
are external and internal standardiza-

tion. In external standardization, the
calibration is based upon comparing the
response of the reference standard with its
concentration. For internal standardiza-

tion, a constant concentration ofan inter-
nal standard is added to each sample and
the ratio ofthe response ofthe analyte to
that of the internal standard is comoared

with the concentration. The external-
standard method is simpler and will be
used for all the examples discussed here;
the details of these rwo methods will be
discussed in a future article.

There are several different ways ro
use a calibration curve to quantify sam-
ples. Because UV detection is used for
most LC methods, and the UV detector
response vs. peak area is linear over five
or more orders of magnitude, we can
assume linear response is possible when
using a method calibration that covers
a wide range of concentrations. Some
other detection methods, for example,
mass spectrometry (MS) or evaporative
light scattering detection (ELSD), have
narrower linear ranges, so a linear cali-
bration might not be appropriate. If a
UV detector is used, we assume that the
well-behaved calibration curve will be
linear. Linearity is defined as

y : m x + b  t l l

wherey is the response (area), x is
the concentration, m is the slope of the
curve, and & is theT-intercept. (Even

though the relationship is linear, we still
call it a curve.) \7hen the curve goes
through the origin (* : 0,1 : 0), b :

0, and the curve can be expressed as

y: mx l2l

In its simplest form, equation2 can
be used for single-point calibration.
In this case, one or more calibrators
are injected at a single concenrrarion
and the concentration ofan unknown
sample is directly proportional to the
response (or average response) ofthe
calibrator or calibrators. For example, if
the calibrator has a response of 100,000

area units for a 10-pL injection of a
1-pg/ml solution and the sample has
a response of 95,342 area unirs, i ts



concentration is (95,3421 100,000) X

1 pgiml : 0.95 pg/ml. Technically,

single-point calibration should be valid

whenever the standard curve behaves

as in equation 2. However, it is best to

inject calibration standards near the

concentration ofthe analyte, so as to

verify that the response continues to

be as expected. For this reason, single-

point calibration usually is reserved for

samples that cluster tightly around a

single concentration. A good example is

a content-uniformity method to deter-

mine the concentration of a drug in a

pharmaceutical product. All samples are

expected to have the same concentra-

tion, so a single calibration standard is

injected at the expected l00o/o concen-

tration. From a practical standpoint,

several calibrator injections are averaged

to minimize error. Often two calibrator

injections are followed by several sample

injections (for example, 5-10), two

more calibrators, and so forth. The four

bracketing calibrators are averaged and

used for calculating the concentration

ofthe unknowns.

Another popular application of equa-

tion 2 is to methods where the expected

range of sample concentrations is narrow,

for example less than one order of mag-

nitude. In this case, a two-point calibra-

tion is used. Calibrators at two concen-

trations that bracket the expected sample

concentrations are injected. For example,

a group ofsamples that have a specifica-

tion of !5o/o froim the target concentra-

tion might have calibrators formulated

at90o/o and 110% ofthe expected

concentration. These would be iniected

and used to calculate min eqration2.
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tion and response: (*go, le) and (rrro,

./iro) for the 90% and 110% concentra-

tions, respectively. The slope would be

determined as 7n : (yrro - !e)l@rr, 
-

xno). (Because the range is narrow, and

will have been shown to be linear in the

validation. it doesn't matter if the curve

passes through the origin or not.) Now

unknown samples can be injected and

the concentration can be determined,

using the calculatedvalue of mas

x = ylm t3l

The third common calibration tech-

nique is the multipoint calibration. As the

name implies, several different points on

the calibration curve are used to calculate

the response vs. concentration relation-

ship. Multipoint calibration is used for

methods that cover a wi& concenra-

tion range (for example, several orders of

magnitude) and for methods where the

calibration curve fits equation l, but does

not pass through the origin (& p,0). For

example, multipoint calibration is used for

methods to determine the concentration

of a drug in plasma for a pharmacokinetic

studies, where concentrations of {l%o of

the maximum concentration (C-"*) need

to be reported, Regulatory guidelines sug-

gest using a minimum of five (1) or six (2)

concentrations across the range to deter-

mine lineariry of a method. Two different

dilution schemes are used for selecting

calibrator concentrations. For a method

spanning l-1000 ng/ml, a linear dilution

might use concentrations of 1, 100' 200,

300, . . . 900, 1000 ng/ml, each differing

by 100 ng/ml. A more popular scheme
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Figure 1: Calibrat ion plot of response versus concentrat ion.
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is an exponential dilution (sometimes

improperly called "logarithmic"), where

concentrations might be 1, 2, 5, 10, 20,

50, 100, 200, 500, 1000 ng/ml. For the

remainder of this article, we will consider

only multipoint calibration.

Does the Curve Go Through Zero?
tVhen a mulr ipoint cal ibrat ion curve is

used, you must decide whether to allow

& 0 (equation 1) or to force the curve

through the origin (equation 2) when

fitting the curve to the calibration data.

Fortunately, this does not need to be an

arbitrary decision, but can be based upon

the regression statistics from the calibra-

tion data. As an example, we will use

the data of Table I, where the response

is listed for a lO-point, expon€ntial-dilu-

tion calibration curve with a range of

l-1000 ng/ml. A linear regression of

the data can be obtained from an Excel

spreadsheet (Toois menu - Data Analysis
- Regression). Most data system software

also will perform linear regression calcu-

lations. The key regression statistics for

the data of Table I are listed in Table II.

The Excel nomenclature is used in Table

II, with additional information added in

parentheses.

The decision to force zero or not on the

calibration curve is based upon how close

the calculatedT-intercept is to zero. This

is difficult to do visually from a plot of

the response vs. concentration, as in Fig-

ure 1, but is easy (and more reliable) to do

statistically. If7 is less than one standard

deviation (SD) away from zero, it can be

assumed that this is normal variation and

x : 0, !: 0 can be used in the standard

curve. \7e can test this with the regression

statistics using the standard error (SE),

since we don't have enough data points

to calculate the SD of1 at x : 0. There

are two values of SE included in the Excel

data of Table II. The first is the SE for

the entire curve, labeled simply "Standard

Error" 0.4134). The second is the stan-

dard error of they-intercept (0.5244), also

Iabeled "Standard Erro!" but included

in the information about the y-intercept

at th€ bottom ofthe table. The SE for

the curve is based upon the variability of

the curve throughout its range, includ-

ing both high and low concentrations.

The SE for the y-intercept is based upon

estimates of variability at the/-intercept,

not the entire curve, and will always be

smaller. The SE of thel-intercept (SE/ ls

the appropriate value to use to test ifthe

curve passes through the origin:

if7-intercept ) SE, set b : valte of

.y-intercept (equation 1) t4l



if.7-intercept < SE, set D : 0
(equation 2) t5l

Examining the data of Table II, we

can see that theT-intercept is 0.8101

and SE, is 0.5244, so the relationship of

equati;n 4 applies. The calibration curve

is described properly as y : 0.9963x -f

0.8101; this is the calibration curve plot-

ted in Figure 1. You can see the practical

impact of choosing the proper origin

by examining the last two columns of

Table I. Here the o/o-error is shown for

each point on the curve. This is calcu-

lated as (experimental value - calculated

value)/calculated value, and expressed

as a percentage. The calculated value is

determined by the regression equation

for the calibration curve (shown in the

footnote ofTable I). Ifthe curve is forced

through zero (third column), errors as

large as 45o/o occu, whereas these are

reduced by a factor of 2 or more for low

concentrations ifthe proper curve fit is

used (fourth column). Errors are larger at

low concentrations, as expected; this will

be discussed in more detail next month.

Potential Problems

There are three potential errors that can

occur relative to the information dis-

cussed previously: the wrong choice of

the calibration model, the wrong choice

about forcing zero, and the wrong test of

a zero intercept. The choice of the cali-

bration model to use should be straight-

forward. Usually, there will be similar

method in use in your laboratory, and

the same calibration model will be used

for all of them. The single-point model

usually is limited to samples where the

expected values are nominally identical.

The two-point model will be used for

methods with a narrow range, usually

less than one order of magnitude. The

multipoint model will be used when the

method range spans several orders of

magnitude and for cases when the curve

cannot be forced through the origin.

The decision about whether or not to

force the curve through zero is an impor-

tant one. As shown in the data of Table I,

Forcing b: 0 when it is not appropriate

can generate larger errors, especially at

low concentrations. The reciprocal also is

true - not forcing zero when it should

be forced - although the erors might

or might not be significant. ('!fith Excel,

rorce zero r, #; ;".,ffi 
^:: 

:':';;
checkbox in the regression dialog box.)

The use of the wrong test for the.,/-

intercept also can have unintended con-

sequences. In the example of Table II,

the SE ofthe curve is 1.4134 and the SE

of theT-interceptis 0.5244. The y inter-

cept is 0.8101 - midway between the

two SE-values. It can be seen that using

SE of the curve for the test would mean
(wrongly) forcing & : 0, with the corre-

sponding higher errors shown in Table I.

Finally, linear regression of calibration

data is a mathematical model meant to

minimize the errors when making gener-

alizations from the calibration curve. The

more points on the calibration curve the

better, and the more replicate injections

at each concentration the better. This

strongly suggests that the choice ofthe

rype of calibration curve and whether or

not to force the curve through zero should

be determined during method validation

when data from many calibration curves

are available to pool. Decisions based

upon a single calibration curve are esti-

mates of estimates, and clearly are not as

good as results from larger data sets.
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