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LC TROUBLESHOOT

or Not to b?

here seem to be a disproportionate

number of problems encountered

in the concentration region near
the limit of detection and lower limit of
quantification with calibration curves
used for liquid chromatography (LC)
methods. Some of these problems relate
to improperly selecting the model used
for calibration. The choice of the limits of
detection and quantification is an impor-
tant decision that can be confusing. This
month’s installment of “LLC Troubleshoot-
ing” is the first of a series about calibra-
tion curves. This month we will discuss
some different calibration models, how to
decide if a calibration curve goes through
zero, and some problems that can occur
if the wrong choices are made. In future
columns, we will look at how to deter-
mine the lower limits of a method as well
as standardization techniques: internal
standardization, external standardization,
and the method of standard additions.
We also will look in more detail at normal
errors as they relate to signal-to-noise ratio
in trace analysis.

Calibration

Most LC methods are used for quantita-
tive analysis — that is, the methods that
answer the “how much is there?” ques-
tion. Nearly all of these methods rely on
comparison of the peak area (or less often,
peak height) of a sample with that of a
reference standard. To do this, we use

a calibration curve (also referred to as a
standard curve or sometimes “line”). The
two most popular methods of calibration
are external and internal standardiza-
tion. In external standardization, the
calibration is based upon comparing the

response of the reference standard with its
concentration. For internal standardiza-
tion, a constant concentration of an inter-
nal standard is added to each sample and
John W. Dolan the ratio of the response of the analyte to
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with the concentration. The external-
standard method is simpler and will be
used for all the examples discussed here;
the details of these two methods will be
discussed in a future article.

There are several different ways to
use a calibration curve to quantify sam-
ples. Because UV detection is used for
most LC methods, and the UV detector
response vs. peak area is linear over five
or more orders of magnitude, we can
assume linear response is possible when
using a method calibration that covers
a wide range of concentrations. Some
other detection methods, for example,
mass spectrometry (MS) or evaporative
light scattering detection (ELSD), have
narrower linear ranges, so a linear cali-
bration might not be appropriate. If a
UV detector is used, we assume that the
well-behaved calibration curve will be
linear. Linearity is defined as

y=mx+b [1]

where y is the response (area), x is
the concentration, 7 is the slope of the
curve, and 6 is the y-intercept. (Even
though the relationship is linear, we still
call it a curve.) When the curve goes
through the origin (x =0,y = 0), b =
0, and the curve can be expressed as

y = mx 2]

In its simplest form, equation 2 can
be used for single-point calibration.
In this case, one or more calibrators
are injected at a single concentration
and the concentration of an unknown
sample is directly proportional to the
response (or average response) of the
calibrator or calibrators. For example, if
the calibrator has a response of 100,000
area units for a 10-pL injection of a
1-pg/mL solution and the sample has
a response of 95,342 area units, its



concentration is (95,342/100,000) X

1 pg/mL = 0.95 pug/mL. Technically,
single-point calibration should be valid
whenever the standard curve behaves

as in equation 2. However, it is best to
inject calibration standards near the
concentration of the analyte, so as to
verify that the response continues to

be as expected. For this reason, single-
point calibration usually is reserved for
samples that cluster tightly around a
single concentration. A good example is
a content-uniformity method to deter-
mine the concentration of a drug in a
pharmaceutical product. All samples are
expected to have the same concentra-
tion, so a single calibration standard is
injected at the expected 100% concen-
tration. From a practical standpoint,
several calibrator injections are averaged
to minimize error. Often two calibrator
injections are followed by several sample
injections (for example, 5-10), two
more calibrators, and so forth. The four
bracketing calibrators are averaged and
used for calculating the concentration
of the unknowns.

Another popular application of equa-
tion 2 is to methods where the expected
range of sample concentrations is narrow,
for example less than one order of mag-
nitude. In this case, a two-point calibra-
tion is used. Calibrators at two concen-
trations that bracket the expected sample
concentrations are injected. For example,
a group of samples that have a specifica-
tion of £5% from the target concentra-
tion might have calibrators formulated
at 90% and 110% of the expected
concentration. These would be injected
and used to calculate 7 in equation 2.
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Each injection would have a concentra-
tion and response: (¥qg, Joo) and (xi0)
J11o) for the 90% and 110% concentra-
tions, respectively. The slope would be
determined as m = (y;;, — )190)/(x110 o
x90). (Because the range is narrow, and
will have been shown to be linear in the
validation, it doesn’t matter if the curve
passes through the origin or not.) Now
unknown samples can be injected and
the concentration can be determined,
using the calculated value of 7 as

x = ylm (3]

The third common calibration tech-
nique is the multipoint calibration. As the
name implies, several different points on
the calibration curve are used to calculate
the response vs. concentration relation-
ship. Multipoint calibration is used for
methods that cover a wide concentra-
tion range (for example, several orders of
magnitude) and for methods where the
calibration curve fits equation 1, but does
not pass through the origin (4 p.0). For
example, multipoint calibration is used for
methods to determine the concentration
of a drug in plasma for a pharmacokinetic
studies, where concentrations of <1% of
the maximum concentration (C__ ) need
to be reported. Regulatory guidelines sug-
gest using a minimum of five (1) or six (2)
concentrations across the range to deter-
mine linearity of a method. Two different
dilution schemes are used for selecting
calibrator concentrations. For a method
spanning 1-1000 ng/mL, a linear dilution
might use concentrations of 1, 100, 200,
300, . . . 900, 1000 ng/mL, each differing
by 100 ng/mL. A more popular scheme
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Figure 1: Calibration plot of response versus concentration.
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Table I: Concentration versus response data

a, calibration based on y = 0.9975x
b, calibration based on y = 0.9963x + 0.8101

is an exponential dilution (sometimes

improperly called “logarithmic”), where
concentrations might be 1, 2, 5, 10, 20,
50, 100, 200, 500, 1000 ng/mL. For the
remainder of this article, we will consider
only multipoint calibration.

Does the Curve Go Through Zero?
When a multipoint calibration curve is
used, you must decide whether to allow
b 0 (equation 1) or to force the curve
through the origin (equation 2) when
fitting the curve to the calibration data.
Fortunately, this does not need to be an
arbitrary decision, but can be based upon
the regression statistics from the calibra-
tion data. As an example, we will use
the data of Table I, where the response
is listed for a 10-point, exponential-dilu-
tion calibration curve with a range of
1-1000 ng/mL. A linear regression of
the data can be obtained from an Excel
spreadsheet (Tools menu — Data Analysis
— Regression). Most data system software
also will perform linear regression calcu-
lations. The key regression statistics for
the data of Table I are listed in Table II.
The Excel nomenclature is used in Table
I, with additional information added in
parentheses.

The decision to force zero or not on the
calibration curve is based upon how close

the calculated y-intercept is to zero. This
is difficult to do visually from a plot of
the response vs. concentration, as in Fig-
ure 1, but is easy (and more reliable) to do
statistically. If y is less than one standard
deviation (SD) away from zero, it can be
assumed that this is normal variation and
x =0,y = 0 can be used in the standard
curve. We can test this with the regression
statistics using the standard error (SE),
since we don’t have enough data points

to calculate the SD of y at x = 0. There
are two values of SE included in the Excel
data of Table II. The first is the SE for
the entire curve, labeled simply “Standard
Error” (1.4134). The second is the stan-
dard error of the y-intercept (0.5244), also
labeled “Standard Error,” but included

in the information about the y-intercept
at the bottom of the table. The SE for

the curve is based upon the variability of
the curve throughout its range, includ-
ing both high and low concentrations.
The SE for the y-intercept is based upon
estimates of variability at the y-intercept,
not the entire curve, and will always be
smaller. The SE of the y-intercept (SEy) is
the appropriate value to use to test if the
curve passes through the origin:

if y-intercept > SE , set 4 = value of

y-intercept (equation 1) [4]
!



if y-intercept < SE, set b = 0
(equation 2) [5]

Examining the data of Table II, we
can see that the y-intercept is 0.8101
and SE _is 0.5244, so the relationship of
equation 4 applies. The calibration curve
is described properly as y = 0.9963x +
0.8101; this is the calibration curve plot-
ted in Figure 1. You can see the practical
impact of choosing the proper origin
by examining the last two columns of
Table I. Here the %-error is shown for
each point on the curve. This is calcu-
lated as (experimental value — calculated
value)/calculated value, and expressed
as a percentage. The calculated value is
determined by the regression equation
for the calibration curve (shown in the
footnote of Table I). If the curve is forced
through zero (third column), errors as
large as 45% occur, whereas these are
reduced by a factor of 2 or more for low
concentrations if the proper curve fit is
used (fourth column). Errors are larger at
low concentrations, as expected; this will
be discussed in more detail next month.

Potential Problems
There are three potential errors that can
occur relative to the information dis-
cussed previously: the wrong choice of
the calibration model, the wrong choice
about forcing zero, and the wrong test of
a zero intercept. The choice of the cali-
bration model to use should be straight-
forward. Usually, there will be similar
method in use in your laboratory, and
the same calibration model will be used
for all of them. The single-point model
usually is limited to samples where the
expected values are nominally identical.
The two-point model will be used for
methods with a narrow range, usually
less than one order of magnitude. The
multipoint model will be used when the
method range spans several orders of
magnitude and for cases when the curve
cannot be forced through the origin.
The decision about whether or not to
force the curve through zero is an impor-
tant one. As shown in the data of Table I,
forcing & = 0 when it is not appropriate
can generate larger errors, especially at
low concentrations. The reciprocal also is
true — not forcing zero when it should
be forced — although the errors might
or might not be significant. (With Excel,
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force zero by clicking the “constant is zero”
checkbox in the regression dialog box.)
The use of the wrong test for the y-
intercept also can have unintended con-
sequences. In the example of Table 11,
the SE of the curve is 1.4134 and the SE
of the y-intercept is 0.5244. The y inter-
cept is 0.8101 — midway between the
two SE-values. It can be seen that using
SE of the curve for the test would mean
(wrongly) forcing & = 0, with the corre-
sponding higher errors shown in Table I.
Finally, linear regression of calibration
data is a2 mathematical model meant to
minimize the errors when making gener-
alizations from the calibration curve. The
more points on the calibration curve the
better, and the more replicate injections
at each concentration the better. This
strongly suggests that the choice of the
type of calibration curve and whether or
not to force the curve through zero should
be determined during method validation
when data from many calibration curves
are available to pool. Decisions based
upon a single calibration curve are esti-
mates of estimates, and cleatly are not as
good as results from larger data sets.
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