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A stepwise process helps
isolate and identify the
cause of a method failure.

John W. Dolan
LC Troubleshooting Editor
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LC TROUBLESHOOTING

ne of the most frequent times

that we discover a problem

with a liquid chromatography
(LC) method is when we examine a
data set following the analysis of a
batch of samples. This month’s “LC
Troubleshooting” looks at some data
submitted by a reader who suspected
that something wasn't right with the
results. These data give us a good
example of how we can examine data
for abnormalities and formulate some
experiments to try to identify the
problem source so we can correct the
problem. I have somewhat obfuscated
the details so that the reader and com-
pany remain anonymous. The sample
comprises a pharmaceutical formula-
tion that was being assayed for potency
following a particular stress test. A
single batch of product was divided
into 12 samples, which were then
treated in the same manner. For analy-
sis, two subsamples were weighed from
each sample, diluted, and injected, for
a total of 24 sample injections. The
potency was determined by comparing
the area response of each injection to
the response of a reference standard.
The method stipulates that if the two
subsamples disagree by more than
1.0% in assay value, the source of dis-
agreement must be investigated. The
reader reported that normally these
“duplicate” samples agree within 0.5%.

The data I received are listed in

the first two columns of Table I.
Each sample is numbered, and the
associated letter identifies the sub-
sample (for example, 1a and 1b are
subsamples of sample 1). I have noted
the absolute difference between the
two subsamples in the third column.
The abnormality that triggered the

Listen to the Data

reader’s inquiry was the 1.41% differ-
ence between samples 4a and 4b. This
difference exceeded the limit allowed
by the method and required that the
chemist perform an investigation to
identify the source of the problem so
that it could be corrected.

Initial Examination

When I try to solve a problem like
this, T like to examine the data in
several ways. Often [ find that a table
of data, such as that of Table I, makes
my eyes glaze over. I do much better
with a graphic representation. To get
an idea of how atypical the 1.41% dif-
ference is, I constructed the frequency
plot shown in Figure 1. Here I sim-
plified the data set by “binning” the
absolute differences into groups with
0.25% increments, so you can see, for
example, that there were five samples
in which the difference between
injections was 0—0.25%. All the data
points except the 1.41% value were
<0.75% difference.

The big gap between the 11 good
sample pairs and the one bad one
makes the problem pair seem like an
obvious outlier. But is there any more
quantitative measure of this? One
simple technique to test for outliers is
the Dixon’s Q-test. A test value is cal-
culated as:

|suspect — nearest|/(largest — smallest) [1]

For this example, |1.41 — 0.73]/(1.41
- 0.07) = 0.51. The critical value of Q
for n > 10 is 0.464 (1), meaning that
any test value larger than the critical
value is an outlier. Now we have some
statistical support in stating that the
difference in assay values for sample
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Table I: Percent assay values for
individual injections of a pharma-

ceutical product

1a 86.18

0.49
1b 85.69
2a 86.45

0.45
2b 86.90
3a 86.10

0.55
3b 86.65
4a 86.11

] 1.41

4b 87.52
Sa 85.81

0.14
5b 85.67
6a 86.64

0.73
6b 85.91
7a 86.18

0.14
7b 86.32
8a 86.68

0.24
8b 86.44
9a 86.58

0.07
9b 86.51
10a 86.83

0.59
10b 86.24
11a 86.58

0.45
11b 86.13
12a 86.16

0.19
12b 85.97
Average 86.34
SD 0.42
%RSD 0.5%
*Samples 1-12 are divided into subsamples
a and b, which should be equivalent.
Difference in assay value between sub-
samples a and b of each sample.

4 is an outlier. As I look at the results
of the Q-test, however, it looks to me
like the 1.41 value isn’t very much of
an outlier. I checked this by looking at
different suspect values using the data
set of Table I, and it is easy to show
that the critical value is exceeded only
when the suspect value is >1.3%. This
says to me that if the current data set
is typical for this method, the require-
ment for differences of <1.0% may be
a bit too tight. That is, a value >1.0%
will trigger an investigation, but unless

Frequency
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Figure 1: Frequency distribution of subsample differences from Table I, binned

into 0.25-unit increments.

it is >1.3%, it is not likely that it can
be proven an outlier with the Dixon’s
Q-test. Such limits should be set as
part of the method validation, where
large data sets are available and the
normal variation of the method can be
determined more easily than with the
limited data available here.

Digging a Bit Deeper
Sometimes it is useful to examine the
data for any trends that might be obyvi-
ous. An easy way to make a first pass
at this is to simply plot the assay values
over time. In Figure 2, I have plotted
the assay values in order for the 24
injections. There doesn’t seem to be
any trend to larger or smaller values
over the course of the analysis. The
variability for the first 12 injections
seems to be larger than for the last 12,
but these were run on two separate
days, so it may be a day-to-day differ-
ence as much as anything. The overall
variability in the data is shown at the
bottom of Table I with the percent rela-
tive standard deviation (%RSD) of only
0.5%. Considering that many autos-
amplers have %RSD in the 0.3-0.5%
range using reference standards under
carefully controlled conditions; it looks
to me like this method (including the
autosampler) is operating with accept-
able precision.

Although the %RSD is good when
comparing samples, I wondered how
good the precision was for the same

sample with multiple injections. I
asked the reader if such data were
available, and I was supplied with the
data in Table II. In Table II, I have
shown the results for the original data
from Table I (4a and 4b), the reinjec-
tion data of the same vials (4a-ri and
4b-ri), and the transfer data of the
contents to a new vial before reinjec-
tion (4a-nv and 4b-nv). I am consid-
ering all 4a samples to be equivalent
and 4b samples to be equivalent. You
can see from the data at the bottom of
the table that the variability (0.5%)
is approximately the same as it is for
the between-sample variability for the
data of Table I (0.5%). This reinforces
the conclusion I drew in the previous
paragraph that the injection process is
working properly.

What Is at Fault?

At this point, we've observed that sam-
ple 4 exceeded the maximum allowable
difference between subsamples and
confirmed that the difference between
subsample 4a and 4b is indeed an out-
lier using the Dixon’s Q-test. We have
also shown that the results for both
samples 4a and 4b have the same level
of precision as the remaining samples,
so it appears that the problem is not
related to the injector. Let’s see if we
can further narrow the source of the
problem to the primary sample 4 or
one of the subsamples 4a or 4b. We

have enough data now that we can
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Figure 2: Plot of assay values from Table | in injection order.

Table II: Data for multiple injiec-

4a 86.11 4b 87.52
4a-ri 86.33 4b-ri 86.67
4a-nv 85.98 4b-nv 86.87
Average 86.14 Average 87.02
SD 0.18 SD 0.44
%RSD 0.2% %RSD 0.5%

*a and b are original values from Table |;
ri is a reinjection of the original sample
from the same vial; nv is a reinjection of
the original sample after it was trans-
ferred to a new vial.

compare the assay values and see if
they are consistent.

First, let’s compare samples 4a and
4b. With the three “equivalent” injec-
tions for each sample from Table II,
we can see if there is a statistical dif-
ference between the mean assay value
of 4a and 4b. We do this with the Stu-
dent’s #-test that is available as part of
the data analysis add-in for Microsoft
Excel. We select the two-tailed test
because we want to know if there is a
difference in the mean values. From
the six data points in Table II, we can
calculate a test value of # = 3.19; for a
probability o = 0.05, the critical value
is = 2.78, so the Student’s #test shows
that there is indeed a significant dif-
ference between the mean assay values

of sample 4a and 4b. The Excel report

(not shown) refines this a bit and indi-
cates that there is only a 3.3% chance
that there is not a significant difference
in means.

Now we know that samples 4a and
4b are not equivalent. Can we extend
the process further and decide if one
or both of them are likely to have an
error in assay value? We can do the
same Student’s #-test for sample 4a and
sample 4b compared to the remain-
ing samples. One might argue that
this is stretching the test a bit, because
the larger data set compares variation
between samples, whereas 4a and 4b
test within-sample variation, but let’s
ignore that for the moment and see
what we get. First, we'll take the data
from Table I and remove the injections
for 4a and 4b, leaving 22 data points.
Then we’ll take the three data points
for 4a and run the #-test comparison,
then repeat it for 4b.

When we compare the larger data
set to sample 4a, we get a test value
of t = 0.76, whereas the critical value
is # = 2.07. This tells us that there is
no statistical difference between the
mean assay value for sample 4a and
that of the remaining samples. With
sample 4b, the test value of ¢ = 3.20,
which exceeds the critical value, so we
can conclude that there is a significant
difference between the mean assay
value for sample 4b and the remaining
samples. We may get a better concept
of this if we view the data in Figure
3. In Figure 3, I have binned all the
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Figure 3: Ffequency distribution of assay values for all samples from Table I,

binned into 0.25% increments.

assay values from Table I into 0.25%
increments. As expected, the general
form is that of a Gaussian distribution,
which would be the case for a large
number of points containing random
error. The mean (bottom of Table I)

is 86.34, which falls in the 86.5 bin.
The value for 4a (86.11) falls in the
86.25 bin, which confirms what we
found above: sample 4a is not signifi-
cantly different than the mean of the
remaining 22 values. The value for 4b
(87.52), however, falls in the 87.5 bin
at the extreme right of Figure 3. With
a standard deviation (SD) of 0.42 for
the data of Table I, this means that 4b
is 2.8 SD from the mean; for a Gauss-
ian distribution, 99.4% of the values
will fall within +2.8 SD of the mean.
Contrast this to the smallest value of
Table I (85.67), which is 1.6 SD below
the mean; 89% of values should fall
within 1.6 SD of the mean, so it is
much less likely that 85.67 is an outlier
than is 87.52.

What's Next?

Now that we've identified sample 4b
as being an outlier, what else can we
do to track down the source of the
problem? First, we should eliminate
the simple and obvious possibilities.
The ones that come to my mind are
transcription errors and integration
errors. If the analytical balance has
a printer attached, check the printer
tape to make sure that the weight for

sample 4b was transcribed correctly
into the calculation of the assay value.
For example, the reported weight (not
shown) was 100.29 mg; if the decimal
values were reversed in transcription
from a true value of 100.92, the correct
weight (100.92 mg) would change the
87.52 assay value to 86.92, and the dif-
ference between 4a and 4b would drop
from 1.41% to 0.86%, and would pass
the maximum difference test (1.0%)
and bring sample 4b within 1.5 SD of
the mean. Another possible error is in
integration of the peak; double-check
that the baseline was drawn properly.

At this point, you may feel that
the investigation is complete. We've
identified sample 4b as an outlier, and
its companion 4a gives a reasonable
value. Depending on your laboratory’s
standard operating procedures (SOPs),
you may be able to drop 4b from the
data set and use the data from 4a for
reporting purposes. Write up your
investigation report and you are done.
Of course, you should keep your eyes
open for similar failures in the future
to determine if there is a high enough
frequency of failure to merit further
investigation.

If you want to investigate further,
you need to consider all the possible
sources of variation and determine if
they are potentially important and if
they can be reduced in magnitude. If
the sources are independent of each
other, the overall coefficient of varia-
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tion (CV = %RSD/100) can be deter-
mined as the square root of the sum of
squares of each variable:

CV=(CV2+CV,2+...+CV Y05 [

Where the subscripts represent each
independent operation. The operations
that come to mind in this instance are
sampling, weighing, dilution, mixing,
filtration, injection, and integration;
there are probably others I've over-
looked. Each of these will contribute
uncertainty to the overall measurement.
Sampling errors reflect how representa-
tive the subsamples are. For example, if
the sample were granular sugar or a cup
of coffee, the primary sample is very
homogeneous, so taking a random sam-
ple should be fairly representative of the
whole. On the other hand, if the sample
were a bag of M&M candies, the distri-
bution of the different colors in a small
subsample would likely have much
more variation. Thus, the homogeneity
of the sample and the ability to take a
representative sample would influence
the sampling step. The variation in
weighing could be tested by weighing

a fixed standard weight multiple times.
The reader did not specify how dilution
was done; however, more uncertainty
would be expected if a graduated cyl-
inder were used to measure the liquid
as compared to preparing the sample

in a volumetric flask. Is the mixing
sufficient for the concentrated sample
and the diluent? Should mixing time
be extended, agitation or sonication
increased, or other variations in the
mixing process be changed to improve
the homogeneity of the diluted sample?
Does filtering the sample affect the
final resule? This possible effect could
be checked by comparing centrifuga-
tion to filtering and seeing if the results
were any different. Check the preci-
sion of the injector by making replicate
injections of a well-behaved analyte. If
errors are constant, such as an error of
+0.1 mg on the analytical balance, a
fixed volumetric error with a volumetric
flask, or +0.2 L for sample injection,
they usually can be reduced by increas-
ing the sample mass, dilution volume,
or injection volume, respectively, to
reduce the percent contribution of the
fixed error to the total.
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Before embarking on a detailed
investigation of the method CV, you
should step back and consider if it is
likely that you will really improve the
results of the analysis. A basic principle
of statistics tells us that for indepen-
dent errors, as in equation 2, the larg-
est error will have the most influence
on the overall error, that the overall
error will never be smaller than the
error of the largest contribution, and
that the overall error will usually fall
between the value of the largest error
and twice that value. We determined in
Table I that the overall method %RSD
was 0.5% based on single injections
of multiple samples. An autosampler
that is operating well should have
errors in the range of 0.3-0.5%, so it
is unlikely that the overall error can
be reduced much below the observed
value of 0.5%. In other words, after a
brief mental evaluation of the problem,
I don’t think I'd waste my time trying
experiments to reduce the overall error.
Instead, I'd stay alert to see if I could
correlate future failures to some pattern
in the analysis.

Conclusions
Let’s review what we've been able to
observe about the present problem:

e An error was found when the dif-
ference in assay values between
equivalent subsamples exceeded the
1.0% threshold.

By evaluating the difference

between subsamples 4a and 4b
both visually (Figure 1) and with
the Dixon’s Q-test, we showed that
the difference was indeed an outlier
from the remaining samples.

We also concluded from the Q-test
that the 1.0% threshold may have
been a bit too tight because, based
on the current data set, differences
of 1.0-1.3% would fail the test
criteria, but would not be proven
outliers by the Q-test.

Based on multiple injections of.
samples 4a and 4b, we used the
Student’s #-test to show that there
was statistical difference between

the mean assay values of the two

samples, so they are not equivalent.
e We also used the #test to find

that the assay value for sample 4a

tic within the normal range of the

remaining samples, whereas sample
4b did not. This test correlated the
cause of the problem with sample
4b, not 4a.

We confirmed the association of
the problem with sample 4b by
plotting a frequency distribution of
the assay values in Figure 3. Sam-
ple 4b was clearly at the extreme
edge of the plot, whereas the value
for 4a was near the middle.

Before concluding the investiga-
tion, it was suggested that we check
for obvious errors in numeric tran-

scription and peak integration.

We mentally evaluated possible
sources of uncertainty with the
method and concluded that it was
unlikely that a thorough investiga-
tion of these sources would yield
information that would reduce
overall uncertainty of the method.
Although the present discussion
centered on a specific data set, it illus-
trates how we can use simple graphic
and statistical tools to investigate the
failure. We were able to assign the error
to a single sample (4b) and demonstrate
that its paired subsample (4a) behaved
in the same manner as the remaining
samples, so it may be possible to use its
results to obtain reliable assay data.

References

(1) J.C. Miller and J.N. Miller, Statistics for
Analytical Chemistry (Ellis Horwood Lim-
ited, 1984).

John W. Dolan

“LC Troubleshooting”
Editor John Dolan has
been writing “LC Trou-
bleshooting” for LCGC
for more than 30 years.
One of the industry’s
most respected profes-
sionals, John is currently
the Vice President of and a principal instruc-
tor for LC Resources in Lafayette, California.
He is also a member of LCGC’s editorial advi-
sory board. Direct correspondence about
this column via e-mail to
John.Dolan@LCResources.com

For more information on this topic, please

visit www.chromatographyonline.com/
column-|c-troubleshooting

MARCH 2015 LCGC NORTH AMERICA VOLUME 33 NUMBER 3 181

Get to Know
Metrohm

lon Chromatography

B3

Laboratory

Process

Find out more at
www.metrohmusa.com/technology

L2 Metrohm

www.metrohm.com



